Visit Citebite Deep link provided by Citebite
Close this shade
DMC Logo and Main Navigation Warranty, Disclaimer, Terms and Conditions About Us Support and Contact Information Online Catalogs Product Search Home
  Search product descriptions
Have questions regarding our Products? Send an email to or call 407-855-6161.



M39029 Connector & Contact Cross Reference

EU RoHS Compliance

PDF Catalogs

Aircraft Tool Kits
Beta Backshell
Connector Tooling Guide
Tensile Test Systems

You will need Adobe Acrobat Reader to view our PDF Catalogs.  If you do not have it, click the image below to download your free copy.

If you would like to receive a copy of our catalog on CD or in print, please send an email request to: Be sure to include your name, company name and complete address and any particular requests or needs that you may have.


Crimping Facts


The first multi-pin connectors were terminated by soldering the conductor to non-removable contacts. However, high temperature applications and the need for simple and reliable field service led to the introduction of connectors with removable contacts. These were crimped onto the conductor rather than being soldered.

The first standard crimp tool developed to crimp these new contacts was introduced in the early sixties. MS3191-1, a military drawing, defined this tool and its accessories. The MS3191-1 utilized a four indent crimp pattern together with a positive stop locator which controlled the travel of the indenters (crimp depth).

The MS3191-1 design was a compromise between simplicity of operation and crimp performance since the crimp depth for any given contact was not adjustable to accommodate the differing diameters of the conductors to which it would be crimped. It was, however, suitable for the crimp connectors of that era.

An improved tool design featuring independently adjustable crimp depths was soon introduced as MS3191-4. The MS3191-4 had an internal adjustment, totally independent of the locator, which permitted the selection of seven separate crimp depths, allowing optimal crimping of conductors ranging from AWG 12 to 26 regardless of the wire barrel size of the contact.

MS3191-4 also introduced the use of the double tipped indenter to produce an eight indent crimp pattern which has consistently achieved superior tensile pull off values.

MS3191-4 introduced the concept of a turret head containing three locators which could be used without separating any of them from the basic crimp tool.

In 1969 two military specifications for crimp tools were developed to replace the existing military drawings. They were MIL-T-22520C (Navy) and MIL-T-83724 (USAF) which defined a standard size crimp tool similar to the MS3191-4, but with an expanded eight step crimp depth range. These specifications also defined a miniature crimp tool to crimp conductors as small as AWG 32.

Both documents were combined in 1971 into MIL-C022520D. All previous military standards for crimp tools were then canceled including the MS3191.

MIL-C-22520 has since replaced many other crimp tool documents including: MS3198, MS22910, MS17776, MS28731, MS90388, MS14037, MS27437, MS27828, MS27832, MS55619, MS27426 and others. This list includes specifications for indent crimp tools, terminal lug crimp tools, pneumatic tools, coaxial cable crimp tools and connectors service kits.

The establishment of MIL-C-22520 was a milestone on the road to crimp tool standardization. Its development has eliminated the waste and confusion which accompanied the overlapping applications of many different "standard" crimp tools called out by a deluge of unrelated military drawings.

MIL-C-22520D for the first time established a single specification which set forth performance requirements for all crimp tools to be used on military standard electrical connectors.


Crimping is a method of firmly attaching a terminal or contact end to an electrical conductor by pressure forming or reshaping a metal barrel, together with the conductor. The forming of a satisfactory crimp depends on the correct combination of conductor, crimp barrel and tool.

When applied with a properly matched tool a union would be established which has both good electrical and mechanical characteristics. The tool will provide these requirements consistently and reliably with repeatability assured by quality cycle controlled tooling. There are several common configurations of crimped joint; several examples are shown below.

The electrical resistance of a properly designed and controlled crimp joint should be equal to, or less than, the resistance of an equal section of wire. Specifications state the requirements in terms of millivot drop at a designated current.

The mechanical strength of a crimped joint and hence its pull-out force (tensile strength), varies with the deformation applied. Therefore, by properly shaping the deformation of a high pull-out force can be achieved, i.e. the crimp die of the tool determines the crimp configuration and deformation.

The dies in the tool determine the completed crimp configuration which is generally an element of contact and/or connector design. Some of the design considerations are: a) The type of contact, its size, shape, material and function, b) The type and size of wires to be accommodated, c) The type of tooling into which the configuration must be built.

, 526 Thorpe Road, Orlando, FL  32824-8133 USA
Tel:  407-855-6161  *  Fax:   407-855-6884  *  Email:

ISO9001/2008 * AS9100:2004
Send email to with questions or comments about this web site.
Terms and Condition of Use for This Website.
Copyright © 2009 Daniels Manufacturing Corporation, All Rights Reserved

Daniels Manufacturing Corporation does not accept Employment Applications or Resumés via Email.


<% conn.close() %>